Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
China Pharmacy ; (12): 192-197, 2024.
Article in Chinese | WPRIM | ID: wpr-1006177

ABSTRACT

OBJECTIVE To investigate the effects of anlotinib on the malignant phenotype of glioma cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. METHODS Human glioma T98G cells were cultured in vitro, and 5-fluorouracil was used as positive control to investigate the effects of different concentrations of anlotinib (5, 10, 20 μmol/L) on the ability of proliferation, adhesion, migration and invasion, the expressions of epithelial-mesenchymal transition (EMT) related proteins [E-cadherin, N-cadherin, vimentin and fibronectin (FN)]. NF- κB signaling pathway inhibitor (BAY 11-7082) and activator (prostratin) were additionally used to verify the possible mechanism of the above effects of anlotinib. RESULTS Anlotinib with 5, 10, 20 μmol/L could significantly decrease the activity of cell proliferation (except for 5 μmol/L anlotinib group), migration rate, and the number of adherent cells and invasive cells, could significantly up-regulate the expression of E-cadherin protein while down-regulate the expressions of N-cadherin, vimentin and FN protein (P<0.05); the effect of 20 μmol/L anlotinib was similar to that of positive control (P>0.05). Compared with 10 μmol/L anlotinib, pathway inhibitor could significantly decrease the ability of proliferation, adhesion, migration and invasion, and the expressions of N-cadherin, vimentin, FN and phosphorylated NF-κB p65 protein, while could significantly up-regulate the expression of E-cadherin protein (P<0.05); above indexes were reversed significantly by pathway activator (P<0.05). CONCLUSIONS Anlotinib may inhibit the proliferation, adhesion, migration and invasion of human glioma T98G cells, which may be associated with the inhibition of the NF-κB signaling pathway, thus inhibiting cell EMT-like processes.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 271-280, 2024.
Article in Chinese | WPRIM | ID: wpr-1005277

ABSTRACT

Atopic dermatitis (AD) is a chronic, recurrent, inflammatory, and pruritus skin disease caused by multiple internal and external factors, ranking first in the global burden of skin diseases. Due to the adverse reactions and high costs of conventional treatments and biologics, the development of natural products has attracted much attention. The nuclear factor-κB (NF-κB) signaling pathway is a key pathway for inhibiting inflammation and modulating immunity. This paper summarizes the pharmacological effects and molecular mechanisms of natural products such as flavonoids, alkaloids, phenols, terpenoids, coumarins, glycosides, and anthraquinones via NF-κB signaling pathway, aiming to provide guidance for the development of natural products. Basic studies have shown that natural products have high safety and efficacy. Oral or topical administration of natural products can regulate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), nuclear factor erythroid 2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1)/receptor for advanced glycation endproducts (RAGE), and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) signaling pathways to exert anti-inflammatory, anti-allergy, antioxidant activities, thus reversing the pathological changes of AD. However, it is worth noting that the clinical application of natural products is still insufficient, and more rigorous clinical trials are still needed to verify their effects. The basic experiments and clinical evidence prove that natural products may play a role in alleviating AD, which provide a basis for evaluating the functioning mechanism of natural active substances and enrich the candidates for the development of potential drugs.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-123, 2024.
Article in Chinese | WPRIM | ID: wpr-1005260

ABSTRACT

ObjectiveTo study whether Chaihu Longgu Mulitang can inhibit hypothalamic inflammation, mitigate anxiety-like behavior, and alleviate anxiety symptoms by regulating the p38 mitogen-activated protein kinase/nuclear factor-κB (p38 MAPK/NF-κB) signaling pathway in the rat model of generalized anxiety disorder (GAD). MethodTwelve out of 74 Wistar rats were randomly selected as the blank group, and the remaining rats were subjected to chronic restraint stress for the modeling of GAD. The open field test (OFT) and elevated Porteus maze test (PMT) were conducted 14 days after modeling to detect the anxiety-like behaviors. Sixty successfully modeled rats were selected and randomized into model, low-, medium-, and high-dose (6, 12, and 24 g·kg-1, respectively) Chaihu Longgu Mulitang, and diazepam (1 mg·kg-1) groups (n=12) and administrated with corresponding drugs for 14 consecutive days. OFT and PMT were then carried out to examine the anxiety-like behaviors of the rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hypothalamus and serum of rats were determined by the enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR)was conducted to determine the mRNA levels of p38 MAPK, NF-κB p65, nuclear factor κB inhibitor α (IκBα), and ionized calcium binding adaptor molecule 1 (Iba-1). The protein levels of p38 MAPK, phosphorylated (p)-p38 MAPK, NF-κB p65, p-NF-κB p65, and IκBα in the hypothalamus of rats were determined by Western blot. The expression of Iba-1 in the hypothalamic microglia was detected by immunofluorescence assay. ResultCompared with the blank group, the model group had decreased body weight, scattered dark yellow fur, increased irritability, and preference to hibernation in the corner. In addition, the modeled rats showed increased edge movement distance and time in OFT (P<0.01) and decreased movement distance and time and the number of entries in the open arm in PMT (P<0.01). The modeling increased the fluorescence intensity of Iba-1 in paraventricular nucleus of hypothalamus (P<0.01), elevated the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamus (P<0.01), up-regulated the protein and mRNA levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and down-regulated the protein and mRNA levels of IκBα (P<0.01) in the hypothalamus. Compared with the model group, medium- and high-dose Chaihu Longgu Mulitang and diazepam increased the body weight, improved the fur and behaviors, decreased the edge movement distance and time in OFT (P<0.05, P<0.01), and increased the movement distance and time in the open arm in PMT (P<0.05, P<0.01). Furthermore, they decreased the fluorescence intensity of Iba-1 in hypothalamic microglia (P<0.05, P<0.01), lowered the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamic tissue (P<0.05, P<0.01), down-regulated the mRNA and protein levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and up-regulated the mRNA and protein levels of IκBα (P<0.05, P<0.01) in the hypothalamus. ConclusionChaihu Longgu Mulitang can mitigate anxiety-like behaviors and relieve anxiety in GAD rats by inhibiting the p38 MAPK/NF-κB signaling pathway and reducing the activation of microglia and the levels of pro-inflammatory cytokines in the hypothalamus.

4.
China Pharmacy ; (12): 33-37, 2024.
Article in Chinese | WPRIM | ID: wpr-1005210

ABSTRACT

OBJECTIVE To study the repair effect of ephedrine on lipopolysaccharide (LPS)-induced microglia function injury and its mechanism. METHODS Human microglia cells (HMC3) were used as research objects to investigate the effects of different concentrations of ephedrine (75, 150, 300, 600 μg/mL) on the viability and apoptosis of HMC3 cells. HMC3 cells were divided into control group (without drug intervention), LPS group (1 μg/mL), ephedrine group (1 μg/mL LPS+300 μg/mL ephedrine), BAY11-7082 group [1 μg/mL LPS+5 μmol/L nuclear factor-κB (NF-κB) pathway inhibitor BAY11-7082], inhibitor group (1 μg/mL LPS+300 μg/mL ephedrine+5 μmol/L BAY11-7082) and activator group (1 μg/mL LPS+300 μg/mL ephedrine+1 μmol/L NF-κB pathway activator Prostratin). After 24 hours of drug treatment, cell migration, the levels of soluble interleukin-6(sIL-6), interleukin-10(IL-10), superoxide dismutase(SOD)and malondialdehyde(MDA), and the expressions of NF-κB pathway-related proteins were all detected. RESULTS The viability of HMC3 cells could be increased significantly by 300 μg/mL ephedrine, while the apoptotic rate was decreased significantly (P<0.05). Compared with the control group, the number of migrating cells was increased significantly in the LPS group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were increased significantly, while the levels of IL-10 and SOD were decreased significantly (P<0.05). Compared with the LPS group, the above indexes were reversed significantly in the ephedrine group and BAY11-7082 group (P<0.05). Compared with the ephedrine group, the number of migrating cells was decreased significantly in the inhibitor group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were decreased significantly, while the levels of IL-10 and SOD were increased significantly (P<0.05). The above indexes were reversed significantly in the activator group (P<0.05)can repair cell injury by inhibiting LPS induced apoptosis, migration, inflammation and oxidant stress of HMC3 cells, the mechanism of which may be associated with inhibiting the activity of the NF-κB signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 42-51, 2023.
Article in Chinese | WPRIM | ID: wpr-984582

ABSTRACT

ObjectiveTo explore the mechanisms of internal treatment (Renshen Baidusan), external treatment (Yurui Enema), and combination of the two methods in treating intestinal mucosal injury in the rat model of ulcerative colitis (UC) from the changes of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt)/nuclear factor-κB (NF-κB) pathway. MethodFifty SPF-grade SD rats were randomized into blank, model, Renshen Baidusan (15.6 g·kg-1), Yurui Enema (25 g·kg-1), and combined treatment (15.6 g·kg-1 Renshen Baidusan + 25 g·kg-1 Yurui Enema) groups (n=10). The rat model of UC was established in other groups except the blank group by 2,4, 6-trinitrosulfonic acid (TNBS)/ethanol. The rats were administered with corresponding drugs once a day for 14 consecutive days since the 8th day after modeling. The histopathological changes of colon were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-10 in the colon tissue. The apoptosis of colon epithelial cells was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The location and expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), TNF-α, and IL-6 in the colon tissue were examined by immunohistochemistry. Real-time quantitative fluorescence polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of the proteins in the PI3K/Akt/NF-κB pathway in the colon tissue. ResultIn the model group, HE staining showed a large number of inflammatory cell infiltration in the mucosa and submucosa. Compared with the blank group, the model group showed elevated levels of TNF-α and IFN-γ and lowered levels of IL-4 and IL-10 in the colon tissue, increased apoptosis rate of colon epithelial cells, increased positive expression of Bax, TNF-α, and IL-6, and decreased positive expression of Bcl-2 (P<0.05). Moreover, the model group showed up-regulated mRNA levels of PI3K, Akt, and NF-κB and protein levels of PI3K, p-PI3K, Akt, p-Akt, p65, p-p65, Bax, and cleaved Caspase-3, increased Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 ratios, and down-regulated protein levels of NF-κB suppressor protein α(IκBα), Bcl-2, and Caspase-3 in the colon tissue (P<0.05). Compared with the model group, the internal treatment, the external treatment, and the combination (referred to as the three groups) alleviated the colonic mucosal injury, lowered the levels of TNF-α and IFN-γ and elevated the levels of IL-4 and IL-10 in the colon tissue, decreased the apoptosis rate of colon cells, inhibited the positive expression of Bax, TNF-α, and IL-6, and promoted the positive expression of Bcl-2 (P<0.05). Furthermore, the combination group down-regulated the mRNA level of PI3K (P<0.05). The three groups down-regulated the mRNA levels of Akt and NF-κB and the protein levels of p-PI3K, Akt, p-Akt, p65, p-p65, Bax, and cleaved Caspase-3 in the colon tissue, decreased the Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 ratios, and up-regulated the protein levels of IκBα, Bcl-2, and Caspase-3 (P<0.05). ConclusionRenshen Baidusan, Yurui Enema, and their combination may inhibit the activation of PI3K/Akt/NF-κB signaling pathway and regulate the expression of genes and proteins related to this pathway to achieve anti-inflammatory and anti-apoptotic effects, thus restoring the intestinal mucosal barrier function of UC rats.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 18-25, 2023.
Article in Chinese | WPRIM | ID: wpr-984579

ABSTRACT

ObjectiveTo explore the mechanism of Buyang Huanwutang in regulating macrophage polarization based on the Toll-like receptor 4 (TLR4) / nuclear factor-κB (NF-κB) / nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) pathway. MethodRAW264.7 macrophages were intervened with lipopolysaccharide (LPS) of different concentrations (0, 1.25, 2.5, 5, 10, 20, 40, and 80 mg·L-1) for 24 hours. Cell Counting Kit-8 (CCK-8) assay was used to determine the cell viability of RAW264.7 macrophages. The optimal concentration was chosen to establish an in vitro inflammation model induced by LPS. Cells were divided into a blank group (20% blank serum), a model group (20% blank serum + 10 mg·L-1 LPS), a model control group (20% FBS + 10 mg·L-1 LPS), low-, medium-, and high-dose (5%, 10%, and 20%) Buyang Huanwutang-containing serum groups, a high-dose (20%) Buyang Huanwutang combined with NLRP3 inhibitor MCC950 (50 μmol·L-1) group, a high-dose (20%) Buyang Huanwutang combined with reactive oxygen species (ROS) inhibitor NAC (10 μmol·L-1) group, and a high-dose (20%) Buyang Huanwutang combined with NF-κB inhibitor PDTC (10 μmol·L-1) group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages. Flow cytometry was employed to measure ROS levels in macrophages. Western blot was used to determine the protein expression of M1-type macrophage-related factors inducible nitric oxide synthase (iNOS) and TNF-α, M2-type macrophage-related factors arginase-1 (Arg-1) and interleukin-10 (IL-10), as well as the proteins in the TLR4/NF-κB/NLRP3 pathway. ResultCCK-8 results indicated that under 10 mg·L-1 LPS stimulation, RAW264.7 macrophages exhibited the highest cell viability (P<0.01). Compared with the blank group, the model group showed significantly increased levels of IL-1β, IL-18, and TNF-α (P<0.05,P<0.01), increased ROS expression (P<0.05,P<0.01), increased protein expression of M1-type macrophage factors iNOS and TNF-α (P<0.01), decreased protein expression of M2-type macrophage factors Arg-1 and IL-10 (P<0.05,P<0.01), and upregulated expression levels of TLR4, myeloid differentiation factor 88 (MyD88), phosphorylated inhibitor of NF-κB (p-IκB)/NF-κB inhibitor (IκB), phosphorylated NF-κB (p-NF-κB) p65/NF-κB p65, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and pro-Caspase-1 (P<0.05, P<0.01). Compared with the model group, all Buyang Huanwutang-treated groups and inhibitor groups significantly reduced levels of IL-1β, IL-18, and TNF-α (P<0.01), suppressed the expression of inflammatory factors in RAW264.7 macrophages, decreased cellular ROS expression levels (P<0.01), downregulated M1-type macrophages iNOS and TNF-α protein expression (P<0.01), upregulated M2-type macrophages Arg-1 and IL-10 protein expression (P<0.01), and lowered protein expression levels of TLR4, MyD88, p-IκB/IκB, p-NF-κB p65/NF-κB p65, NLRP3, ASC, and pro-Caspase-1 (P<0.05, P<0.01). ConclusionBuyang Huanwutang can improve macrophage inflammation, potentially by reducing macrophage ROS levels, inhibiting RAW264.7 macrophage polarization, and downregulating the protein expression levels of the TLR4/NF-κB/NLRP3 pathway.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-8, 2023.
Article in Chinese | WPRIM | ID: wpr-984577

ABSTRACT

ObjectiveTo explore the mechanism of Dahuang Mudantang in alleviating the intestinal injury in the rat model of acute pancreatitis via the high-mobility group box 1 (HMGB1)/receptor for advanced glycation endproduct (RAGE)/nuclear factor-κB (NF-κB) signaling pathway. MethodOne hundred and twenty SPF-grade Wistar rats received retrograde injection of 5% sodium taurocholate into the biliopancreatic duct for the modeling of intestinal injury in acute pancreatitis. The rats were randomized into blank, model, low-, medium-, and high-dose (3.5, 7, 14 g·kg-1, administrated by gavage) Dahuang Mudantang, and octreotide (1×10-5 g·kg-1, subcutaneous injection) groups (n=20). The rats in blank and model groups received equal volume of distilled water by gavage. Drugs were administered 1 h before and every 12 h after modeling, and samples were collected 24 h after modeling. The general status of the rats was observed. The biochemical methods were employed to measure the levels of amylase (AMS) and C-reactive protein (CRP) in the serum. The enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the colon tissue. The morphological changes of pancreatic and colon tissues were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to measure the expression levels of HMGB1, RAGE, inhibitor of NF-κB kinase (IKK), and NF-κB suppressor protein α(IκBα)in the colon tissue. ResultThe rats in the model group showed poor general survival, writhing response, reduced frequency of defecation, and dry stool. The symptoms of rats in the model group were mitigated in each treatment group, and the high-dose Dahuang Mudantang showed the most significant effect. Compared with the normal group, the model group had elevated AMS and CRP levels (P<0.05), which were lowered by Dahuang Mudantang (P<0.05), especially that at the high dose (P<0.05). Compared with the normal group, the modeling elevated that levels of TNF-α, IL-1β, and IL-6 (P<0.05). Such elevations were lowered by Dahuang Mudantang (P<0.05), and the high-dose group and the octreotide group showed better performance (P<0.05). The modeling caused necrotic, congested, and destructed pancreatic and colonic tissues, which were ameliorated by the drugs, especially high-dose Dahuang Mudantang. Compared with the normal group, the modeling up-regulated the mRNA levels of HMGB1, RAGE, IKK, IκBα, and NF-κB (P<0.05). Compared with the model group, Dahuang Mudantang and octreotide down-regulated the mRNA levels of HMGB1, RAGE, IKK, IκBα, and NF-κB (P<0.05), and the high-dose Dahuang Mudantang demonstrated the best performance (P<0.05). Western blot results showed a trend consistent with the results of Real-time PCR. ConclusionDahuang Mudantang can improved the general status, reduce inflammation, and alleviate histopathological changes in the pancreatic and colon tissues in the rat model of acute pancreatitis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 274-282, 2023.
Article in Chinese | WPRIM | ID: wpr-978473

ABSTRACT

Osteonecrosis of the femoral head (ONFH) is a painful and debilitating disease caused by impaired blood supply to the femoral head and cellular and tissue degeneration, leading to gradual destruction of the bone structure and progressive collapse of the femoral head. The main pathological mechanism of ONFH is the disruption of the balance between bone absorption and the reconstruction of new bone, resulting from microcirculation damage and decreased cellular tissue ability. This imbalance leads to biomechanical changes and accelerates the pathological progression of ONFH. In the early stages, clinical manifestations may not be obvious, mainly presenting as pain or discomfort in the hip or groin area, which can be relieved after rest. In the later stage of the disease, pain intensifies, and limb shortening, lower limb weakness, difficulty walking, or limping may occur. Currently, western medicine commonly uses osteogenic agents, anticoagulants, and artificial joint replacement for treatment, but there are also many issues such as prosthesis loosening and infection. Research has shown that traditional Chinese medicine (TCM) treatment of ONFH takes a holistic approach and employs multi-functional, multi-target, and multi-system Chinese medicine therapies, ensuring the safety and effectiveness of the treatment. The osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL) signaling pathway plays a crucial role in maintaining the dynamic balance of bone remodeling. TCM treatments utilize this pathway to promote apoptosis of osteoclasts, reduce bone resorption, and accelerate bone formation, thereby playing an important role in the prevention and treatment of ONFH. This paper reviewed the role of OPG/RANK/RANKL signaling pathway and related cytokine expression in ONFH by reviewing relevant literature in China and abroad and research status of Chinese medicinal monomers, Chinese medicinal formulations, and combinations with physical therapy in increasing osteoblast secretion, promoting OPG expression, enhancing cytokine expression levels, and inhibiting osteoclast activity for the prevention and treatment of ONFH. This paper is expected to provide new ideas and directions for TCM in the prevention and treatment of ONFH.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-273, 2023.
Article in Chinese | WPRIM | ID: wpr-978472

ABSTRACT

Ulcerative colitis (UC) is a commonly seen digestive system disease with unclear pathogenesis. The condition is complex and variable, often chronic, and has a long treatment period with no specific cure. Currently, the treatment of UC often involves the use of corticosteroids, aminosalicylates, and biologics in western medicine, which provide fast-acting and definite efficacy in the short term. However, with prolonged medication, some patients may develop drug resistance and worsening of the disease, leading to the occurrence of colon cancer. Research has found that oxidative stress is one of the important pathogenic factors in UC and influences its onset and development. Oxidative stress is a state of imbalance between oxidative products and the antioxidant system in the body, characterized by overexpression of oxidative products such as malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), or deficiency of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). It is worth noting that traditional Chinese medicine (TCM), as a unique characteristic medicine of China, has achieved significant efficacy in the treatment of UC. Studies have shown that TCM effectively inhibits the occurrence of UC by suppressing the accumulation of metabolites and antagonizes the development of UC by enhancing the antioxidant system. Therefore, using TCM to regulate the oxidative balance as a diagnostic and therapeutic approach may be a new method and direction for the treatment of UC in the future. Based on the above research, this article summarized the mechanisms of key pathogenic proteins in oxidative stress and the occurrence and development of UC, and compiled the effective ingredients of Chinese medicine, single drugs, prescriptions, and acupuncture and moxibustion in regulating upstream and downstream target proteins of oxidative stress. These interventions can reduce pathological damage to the intestinal mucosa, lower the colon injury index, enrich the intestinal microbiota, increase colon length, and improve clinical symptoms of UC. The article is expected to expand the application of TCM in the treatment of UC and provide a reliable scientific theoretical basis.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 52-57, 2023.
Article in Chinese | WPRIM | ID: wpr-978450

ABSTRACT

ObjectiveTo observe the glucose-lowering, insulin resistance-improving, and anti-inflammatory effects of flavonoids from mulberry leaves (FML) and explore their underlying mechanism. MethodMale db/db mice aged 6-7 weeks were randomly divided into a model group, a high-dose FML group (1.00 g·kg·d-1), and a low-dose FML group (0.50 g·kg-1·d-1). C57BL mice of the same age were assigned to the normal group. After six weeks of intervention, fasting blood glucose (FBG), serum fasting insulin levels (Fins), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), free fatty acid (FFA), blood creatinine (SCr), blood urea nitrogen (BUN), and aspartate aminotransferase (AST) levels were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase activities in the liver were measured. Morphological changes in the liver were assessed by hematoxylin-eosin (HE) staining. The protein expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) in the liver was detected by Western blot. ResultCompared with the model group, the high-dose and low-dose FML groups showed significant reductions in FBG, Fins, HOMA-IR, IL-6, TNF-α, and FFA levels (P<0.05, P<0.01), and increased levels of SOD, GSH-Px, and catalase in the liver (P<0.05, P<0.01). HE staining of the liver in the FML groups showed improved arrangement of hepatocytes, reduced inflammatory cell infiltration, and alleviated cellular steatosis compared with the model group. The protein expression of COX-2, iNOS, and NF-κB in the liver significantly decreased in the FML groups as compared with that in the model group (P<0.05, P<0.01). ConclusionFML have glucose-lowering and insulin resistance-improving effect, which may be attributed to their regulation of the NF-κB pathway in the liver of diabetic mice, leading to the suppression of the release of COX-2, iNOS, and inflammatory cytokines, thereby improving the inflammatory state.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 14-21, 2023.
Article in Chinese | WPRIM | ID: wpr-976535

ABSTRACT

ObjectiveTo observe the therapeutic effect and underlying mechanism of Linggui Zhugantang on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. MethodSeventy-two 7-week-old C57BL/6 mice of SPF grade were randomly divided into a normal group, a model group, a dexamethasone group (5 mg·kg-1), and high-, medium-, and low-dose Linggui Zhugantang groups (9.36, 4.68,2.34 g·kg-1), with 12 mice in each group. Except for the normal group, the remaining groups underwent intranasal instillation of LPS (50 μg per mouse) for the induction of the ALI model. The treatment groups received oral administration for 7 days prior to modeling. After 12 hours of modeling, mouse lung tissues were taken to measure the wet/dry weight ratio (W/D). Hematoxylin-eosin (HE) staining was performed to observe the pathological morphological changes in lung tissues. Bronchoalveolar lavage fluid (BALF) was collected for total cell count using a cell counter, and Wright-Giemsa staining was conducted to classify and quantify inflammatory cells (neutrophils and macrophages). Enzyme-linked immunosorbent assay (ELISA) was used to determine the expression levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in BALF. Western blot analysis was performed to detect the expression of nuclear factor-κB (NF-κB) inhibitory protein α (IκBα), NF-κB p65, and their phosphorylated proteins, and the ratio of phosphorylated protein/total protein was calculated. ResultCompared with the normal group, the model group exhibited severe lung tissue damage, disrupted alveolar structure, thickened alveolar walls, infiltration of extensive inflammatory cells and red blood cells, and significantly aggravated lung edema (P<0.01). The total cell count, inflammatory cell count, expression levels of IL-6, and TNF-α in BALF, as well as NF-κB p65 and phosphorylated IκBα in lung tissues, were significantly upregulated in the model group (P<0.01). Compared with the model group, high-, medium-, and low-dose Linggui Zhugantang groups, as well as the dexamethasone group, showed improved lung injury, reduced lung edema (P<0.01), downregulated total cell count, neutrophil count, expression levels of IL-6 and TNF-α in BALF, and NF-κB p65 and phosphorylated IκBα in lung tissues (P<0.01), and reduced macrophage count (P<0.05). ConclusionLinggui Zhugantang has anti-inflammatory and protective effects on LPS-induced ALI in mice, effectively reducing inflammation and promoting diuresis and edema elimination. Its mechanism may be related to the inhibition of NF-κB pathway activation.

12.
International Eye Science ; (12): 1072-1079, 2023.
Article in Chinese | WPRIM | ID: wpr-976473

ABSTRACT

AIM: To investigate the mechanism of pyrrolidine dithiocarbamate(PDTC)on transforming growth factor-beta 2(TGF-β2)-induced epithelial-mesenchymal transition(EMT)in human lens epithelial cells(LECs).METHODS: LECs were treated with various doses of PDTC chemicals following TGF-β2 caused EMT on these cells. Cell proliferation and lateral migration were discovered using the CCK-8 and cell scratch test. The markers of EMT, including E-cadherin, α-SMA and nuclear factor-κB(NF-κB)signaling pathway-related expression, were tested by Western Blot as well as the changes in the expression of the apoptosis-related proteins BAX, BCL-2, Caspase-3, and Cyclin D1.RESULTS: The proliferation and migration viability of cells in the TGF-β2 treated group was increased compared to the group without TGF-β2, and the expression of α-SMA increased whereas the E-cadherin expression decreased. With the effect of TGF-β2, NF-κB p65 and phosphorylated NF-κB p65 expression increased, the concentration of TGF-β2 that had the greatest capacity for proliferation and migration was 10 ng/mL(P&#x003C;0.05). Mechanism study of PDTC-induced EMT reversal and apoptosis showed that cell viability and migratory capability were both significantly reduced after PDTC intervention; PDTC prevents IκB phosphorylation, thus inhibiting NF-κB nuclear translocation. Protein associated to the NF-κB signaling pathway, and protein expression of NF-κB/IκBα/p-IκBα/Iκκ-α/p-Iκκ-α was decreased(P&#x003C;0.05), PDTC increased the expression of the pro-apoptotic protein BAX/Caspase-3, expression of the inhibitor of apoptosis protein BCL-2 and the cell cycle protein Cyclin D1 was reduced. The expression of NF-κB/IκB mRNA was reduced, expression of the apoptosis-related mRNA BAX increased, while BCL-2 reduced.CONCLUSION: The EMT in LECs cells induced by TGF-β2 can be significantly reversed by PDTC, which may be related to the decreased expression of NF-κB p65/IκB/Iκκ-α and activation of apoptosis-related protein. PDTC can reverse EMT by inhibiting NF-κB signaling pathway and induce apoptosis of abnormally proliferated cells, which will provide new potential therapeutic agents for posterior capsular opacification(PCO)treatment.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 11-20, 2023.
Article in Chinese | WPRIM | ID: wpr-975151

ABSTRACT

ObjectiveTo investigate the effect of Jingui Shenqiwan on diabetic osteoporosis (DOP) in mice by regulating the advanced glycation end products (AGEs)/receptor activator of nuclear factor-κB ligand (RANKL)/nuclear factor-κB (NF-κB) signaling pathway based on the theory of "kidneys governing bones". MethodForty 6-week-old male and female skeletal-muscle-specific, dominant negative insulin-like growth factor-1 receptor (MKR) mice were selected and fed on a high-fat diet for eight weeks to establish the DOP model. The model mice were randomly divided into a model group, low- and high-dose Jingui Shenqiwan group (1.3, 2.6 g·kg-1), and an alendronate sodium group (0.01 g·kg-1), with 10 mice in each group. Additionally, 10 FVB/N mice of the same age were assigned to the normal group. The corresponding drugs were administered orally to each group once a day for four weeks. After the administration period, fasting blood glucose (FBG) measurement and oral glucose tolerance test (OGTT) were conducted. Kidney function and kidney index were measured. Renal tissue pathological changes were observed through hematoxylin-eosin (HE) and Masson staining. Immunohistochemistry was performed to assess the protein expression levels of AGEs, phosphorylated NF-κB (p-NF-κB), and RANKL in renal tissues. Western blot analysis was conducted to measure the expression of proteins related to the AGEs/RANKL/NF-κB signaling pathway, osteoprotegerin (OPG), and Runt-related transcription factor 2 (RUNX2) proteins in femoral bone tissues. ResultCompared with the normal group, mice in the model group exhibited significantly increased FBG (P<0.01), trabecular bone degeneration, abnormal bone morphological parameters, significantly increased area under the curve (AUC) of OGTT (P<0.01), enlarged kidney volume, significantly increased kidney function indicators and kidney index (P<0.01), disrupted renal glomeruli and renal tubule structures, significantly increased expression of AGEs, RANKL, and p-NF-κB/NF-κB in renal tissues (P<0.05), and significantly decreased expression of OPG and RUNX2 in femoral bone tissues (P<0.01). Compared with the model group, mice in the Jingui Shenqiwan groups showed a significant decrease in OGTT AUC (P<0.01). Histopathological analysis revealed alleviated structural lesions in renal glomeruli and renal tubules. Furthermore, the expression of AGEs, RANKL, and p-NF-κB/NF-κB in renal tissues was significantly reduced (P<0.05, P<0.01), and the expression of RUNX2 and OPG in femoral bone tissues was significantly increased (P<0.05, P<0.01). ConclusionJingui Shenqiwan can improve kidney function and downregulate the AGEs/RANKL/NF-κB signaling pathway to inhibit inflammatory reactions, thereby alleviating the symptoms of DOP in mice, demonstrating a therapeutic effect on DOP from the perspective of the kidney.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 248-256, 2023.
Article in Chinese | WPRIM | ID: wpr-973155

ABSTRACT

Traditional Chinese medicine (TCM) has certain advantages in the treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). In recent years, there have been many studies on the treatment of CKD-MBD by Chinese medicinal compounds and monomers. As revealed by literature retrieval, the research on the mechanism of Chinese medicine in intervening in signaling pathways related to CKD-MBD was mainly based on self-made Chinese medicinal compounds, and the action pathways involved fibroblast growth factor 23/Klotho (FGF23/Klotho) signaling pathway, Wnt/β-catenin signaling pathway, receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANK/RANKL/OPG) system, and other signaling pathways. TCM can improve calcium and phosphorus metabolism and bone metabolism disorder, and regulate inflammatory reaction, oxidative stress, apoptosis, and autophagy by regulating this series of signaling pathways for the treatment of CKD-MBD. This paper introduced the research results of these signaling pathways and the mechanism of TCM in the treatment of CKD-MBD in order to provide ideas and references for the related research of Chinese medicine in the treatment of CKD-MBD.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 121-127, 2023.
Article in Chinese | WPRIM | ID: wpr-973140

ABSTRACT

ObjectiveTo study the clinical efficacy of Shire Biqing pill in the treatment of rheumatoid arthritis (damp-heat obstruction syndrome) and its effect on the expression of serum osteoprotegerin (OPG), nuclear factor-κB receptor activating factor ligand (RANKL), and tumor necrosis factor-α (TNF-α), and to explore its mechanism from the perspective of bone destruction. MethodPatients with rheumatoid arthritis (damp-heat obstruction syndrome) were randomly divided into two groups, with 36 patients in each group. The control group was treated with methotrexate tablets and celecoxib capsule, while the treatment group was treated with Shire Biqing pill based on the control group. The treatment period was 3 months. The pain visual analogue scale (VAS) score, joint tenderness number, joint swelling number, disease activity score (DAS28-ESR), traditional Chinese medicine (TCM) symptom quantitative score, and related adverse reactions were recorded before and after treatment, and the peripheral serum OPG, RANKL, TNF-α, erythrocyte sedimentation rate (ESR), and Creactive protein (CRP) were detected. ResultAfter treatment, the total effective rate was 88.57% (31/35) in the treatment group and 79.41% (27/34) in the control group. The total effective rate of the treatment group was higher than that of the control group (Z=-2.089, P<0.05). The pain VAS score, joint tenderness number, joint swelling number, and DAS28-ESR of the two groups were significantly lower than those before treatment (P<0.05), and the pain VAS score, joint tenderness number, joint swelling number, and DAS28-ESR of the treatment group were significantly better than those of the control group after treatment (P<0.05). Compared with that before treatment, the TCM symptom quantitative score in the two groups decreased significantly (P<0.05), and the decrease was more obvious in the treatment group than in the control group (P<0.05). Compared with those before treatment, the levels of RANKL, TNF-α, ESR, and CRP in the two groups decreased and the level of OPG increased (P<0.05), and the changes in the treatment group were more obvious that in the control group (P<0.05). There were no serious adverse events or serious adverse reactions during this clinical trial. ConclusionShire Biqing pill can effectively improve the clinical symptoms of rheumatoid arthritis (damp-heat obstruction syndrome) with good safety. Shire Biqing pill effectively regulate the OPG/RANKL/RANK system and reduce the pro-inflammatory factor TNF-α, which may be its mechanism in the intervention in rheumatoid arthritis bone destruction.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 46-54, 2023.
Article in Chinese | WPRIM | ID: wpr-973131

ABSTRACT

ObjectiveTo explore the effect of Tongxie Yaofang on the immune microenvironment of colorectal cancer in mice under chronic stress and the underlying mechanism. MethodA total of 40 male SPF BABL/C mice were randomized into normal group, stress group, Tongxie Yaofang group (13.65 g·kg-1), and Tongxie Yaofang-stress group (13.65 g·kg-1), with 10 in each group. Chronic restraint stress was induced in mice and administration (ig) of Tongxie Yaofang began after 7 days of stress. On the 14th day, forced swim and tail suspension tests were used to examine the behavioral changes of mice after stress and the subcutaneous colorectal tumor was implanted in each group of mice. The effect of this prescription on the body mass and tumor volume of mice was observed. After the last administration, mouse serum and tumor samples were collected. The content of T lymphocytes (CD3+, CD4+, CD8+, and CD4+/CD8+) in tumor was detected by immunohistochemistry and flow cytometry and levels of corticosterone (CORT) in peripheral blood, and interleukin (IL)-2, interferon-γ (IFN-γ), IL-6, and IL-10 in the serum were determined by enzyme-linked immunosorbent assay (ELISA). The protein expression of inhibitor of nuclear factor-κB(IκB) kinase α/β (IKKα/β), nuclear factor-κB (NF-κB)α (IκBα), NF-κB p65, and phosphorylated (p)-NF-κB p65 was measured by Western blot. ResultCompared with the normal group, the stress group had large tumor volume (P<0.05), low content of CD3+, CD4+, and CD4+/CD8+ (P<0.05, P<0.01), high content of CD8+, low content of T helper 1 (Th1)-secreted IFN-γ (P<0.05), high content of T helper 2 (Th2)-secreted IL-10 (P<0.05) and CORT (P<0.05), high protein expression of p-NF-κB p65, NF-κB p65, and IKKα/β (P<0.05), and low protein expression of IκBα (P<0.05). Compared with the normal group, the Tongxie Yaofang group showed slow tumor growth, high content of CD3+, CD4+, and CD4+/CD8+ (P<0.01), low content of CD8+ (P<0.05), high content of Th1-secreted IL-2 and IFN-γ (P<0.05), low content of Th2-secreted IL-6 and IL-10 (P<0.05), low content of CORT, low protein expression of p-NF-κB p65, NF-κB p65, and IKKα/β (P<0.05), and high protein expression of IκBα (P<0.01). Tongxie Yaofang-stress group demonstrated slower tumor growth, higher content of CD3+, CD4+, and CD4+/CD8+ (P<0.01), smaller content of CD8+ (P<0.05), higher content of IL-2 and IFN-γ (P<0.05), lower content of IL-6, IL-10 (P<0.05), and CORT (P<0.05), lower protein expression of p-NF-κB p65, NF-κB p65, and IKKα/β (P<0.05,P<0.01), and higher protein expression of IκBα (P<0.01) than the stress group. ConclusionTongxie Yaofang can delay the growth of colorectal cancer under chronic stress and alleviate the deterioration of the immune microenvironment, possibly by inhibiting NF-κB signaling pathway, regulating the function of T lymphocyte subsets, and thus suppressing the secretion of pro-inflammatory factors.

17.
China Pharmacy ; (12): 1042-1047, 2023.
Article in Chinese | WPRIM | ID: wpr-972944

ABSTRACT

OBJECTIVE To study the osteoprotective effects and possible mechanism of total saponins of Chaenomeles speciosa on rheumatoid arthritis (RA) model mice, and to provide reference for further development of anti-RA drugs. METHODS Seventy male DBA/1 mice were randomly divided into normal group, model group, low-dose and high-dose groups of C. speciose total saponins (60, 240 mg/kg), Tripterygium wilfordii polyglycoside tablets group (positive control, 30 mg/kg), with 14 mice in each group. In addition to the normal group, the other groups of mice were induced by glucose-6-phosphate isomerase mixed polypeptide to prepare RA model. The body weight, rear toes thickness and arthritis scores of each group were recorded; the synovial inflammation, bone and cartilage destruction of ankle joint tissues were observed by hematoxylin-eosin staining, tartrate- resistant acid phosphatase staining and safranin O-fast green staining; the contents of interleukin-6 (IL-6) in serum and tumor necrosis factor α (TNF-α), IL-4 and IL-10 in ankle joint tissues were detected by ELISA; the expression levels of receptor activator of nuclear factor-κB ligand (RANKL), receptor activator of nuclear factor-κB (RANK), osteoprotegerin (OPG), tumor necrosis factor receptor-associated protein 6 (TRAF6) and nuclear factor of activated T cells 1 (NFATC1) protein in ankle joint tissues were detected by Western blot assay. RESULTS At the end of administration, compared with normal group, the body mass of mice in the model group was significantly reduced (P<0.05), and the arthritis score and the thickness of the left and right rear toes were significantly increased (P<0.05); the ankle joint tissues of mice in the model group showed significant synovial proliferation and inflammatory infiltration, the number of osteoclasts increased significantly and significant destruction of cartilage tissue. The content of IL-6 in serum, the content of TNF-α, the protein expression levels of RANKL, RANK, TRAF6 and NFATC1 in the ankle joint tissues were increased significantly (P<0.05), while the contents of IL- 4 and IL-10, the protein expression level of OPG in the ankle joint tissues were decreased significantly (P<0.05). Compared with model group, above pathomorphological changes and the content/level of indicators of mice in each administration group were significantly improved (P<0.05). CONCLUSIONS Total saponins of C. speciosa may exert osteoprotective effects on RA model mice, the mechanism of which may be associated with reducing the contents of IL-6 and TNF-α, increasing the contents of IL-4 and IL-10, inhibiting the activation of RANKL/RANK/OPG signal pathway, thus inhibiting the proliferation of osteoclasts and promoting the repair of cartilage and bone tissue.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 53-63, 2023.
Article in Chinese | WPRIM | ID: wpr-972285

ABSTRACT

ObjectiveTo investigate the anti-inflammatory effect of the component compatibility of Gentianae Macrophyllae Radix and Clematidis Radix et Rhizoma on the rat model of rheumatoid arthritis (RA) and the mechanism. MethodSeventy-two SPF-grade SD rats (male and female) aged 5 to 6 weeks were selected. Except the blank group, the rat model of collagen-induced arthritis (CIA) was replicated by the type Ⅱ collagen induction method. The 64 rats after successfully modeling were randomly divided into model group, methotrexate group (0.375 mg·kg-1), gentianoside with magnoflorine group (150.454 1 mg·kg-1+5.061 8 mg·kg-1), gentianoside with clematichinenoside AR group (150.454 1 mg·kg-1+16.433 1 mg·kg-1), sweroside with magnoflorine group (3.455 8 mg·kg-1+5.061 8 mg·kg-1), sweroside with clematichinenoside AR group (3.455 8 mg·kg-1+16.433 1 mg·kg-1), swertiamarin with magnoflorine group (9.303 2 mg·kg-1+5.061 8 mg·kg-1), and swertiamarin with clematichinenoside AR group (9.303 2 mg·kg-1+16.433 1 mg·kg-1), with 8 rats in each group. Each group was given the corresponding medicinal solution or normal saline by gavage for 15 d. During the experiment, the general status, of rats in each group were observed and recorded. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), rheumatoid factor (RF), C reactive protein (CRP), prostaglandin E2 (PGE2), and anti-cyclic peptide containing citrulline antibody (anti-CCP Ab) in the serum of rats were measured by enzyme-linked immunosorbent assay (ELISA). The histopathological changes in rat ankle joints were observed by hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) and Western blot were used to detect the protein expression of nuclear factor-κB (NF-κB) and vascular endothelial growth factor (VEGF) in rat ankle joints. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of NF-κB and VEGF in rat ankle joints. ResultCompared with those in the blank group, rats in the model group were in poor general conditions with significant foot-plantar swelling, and the content of CRP, anti-CCP Ab, and IL-1β in the rat serum was significantly increased (P<0.01). In the model group, the tissue structure of the ankle joint was severely damaged, and the protein and mRNA expression of NF-κB and VEGF in the rat ankle joints were significantly up-regulated (P<0.01). As compared with the model group, the general status of rats in each administration group was significantly improved. The levels of serum TNF-α, IL-1β, RF, CRP, PGE2, and anti-CCP Ab were reduced to different degrees in these administration groups, among which the effects of the gentianoside with clematichinenoside AR group on down-regulating serum TNF-α and IL-1β, the gentianoside with magnoflorine group on down-regulating serum RF and CRP, the sweroside with magnoflorine group on down-regulating serum PGE2, and the swertiamarin with clematichinenoside AR group on lowering serum anti-CCP Ab were better than those of administration groups. The histopathological changes in the ankle joint were improved to different degrees. The protein and mRNA expression of NF-κB and VEGF in rat ankle joints in the administration groups was significantly down-regulated (P<0.05, P<0.01), and the swertiamarin paired with clematichinenoside AR group had the most significant effect. ConclusionThe component compatibility of Gentianae Macrophyllae Radix and Clematidis Radix et Rhizoma exerts a good therapeutic effect on the rat model of RA, and the compatibility of components from the two medicines has a multi-channel, multi-target, and synergistic effect. The five component compatibility patterns, namely gentiobioside with magnoflorine, gentiobioside with clematichinenoside AR, sweroside with clematichinenoside AR, swertiamarin with magnoflorine, and swertiamarin with clematichinenoside AR, all have potential advantages. The mechanism may be related to the reduction of inflammatory factor secretion and the inhibition of abnormal protein and mRNA expression of NF-κB and VEGF.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 43-52, 2023.
Article in Chinese | WPRIM | ID: wpr-972284

ABSTRACT

ObjectiveTo explore the anti-inflammatory effect of Duhuo Jishengtang (DHJST) on collagen-induced arthritis (CIA) model rats and its effect on the Toll-like receptor 2 (TLR2)/p38 mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) signaling pathway. MethodForty-eight male SD rats were randomly divided into the following six groups (n=8): normal group, model group, methotrexate (MTX) group, low-dose DHJST (DHJST-L) group, medium-dose DHJST (DHJST-M) group, and high-dose DHJST (DHJST-H) group. The CIA model was established by injecting bovine type Ⅱ collagen into the rat tail root with the collagen antibody induction method. After model induction, rats were treated with drugs by gavage. The rats in the MTX group received MTX at 2.0 mg·kg-1, three times a week, and those in the DHJST groups received DHJST at 3.8, 7.6, 15.2 g·kg-1·d-1 for 28 days. The rats in the normal group and the model group were given the same dose of normal saline. The weight of the rats was recorded, and the paw swelling degree was observed. The arthritis index and immune organ index were measured, and the changes in the microcirculation indexes of the rats were detected with a microcirculation detector. Hematoxylin-eosin (HE) staining was used to detect the pathological morphologic changes in rat synovial tissues and the apoptosis rate of synovial cells was detected by flow cytometry to determine the therapeutic effect of DHJST on rheumatoid arthritis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the changes in serum levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-17A, and interferon-γ (IFN-γ). The protein expression of TLR2, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), p38 MAPK, and p-p38 MAPK was detected by Western blot. ResultCompared with the normal group, the model group showed reduced body weight (P<0.01), increased paw swelling degree, arthritis index, and immune organ index (P<0.01), increased comprehensive microvascular score and vascular resistance (P<0.01), significant hyperplasia of synovial tissues and massive infiltration of inflammatory cells as revealed by pathological sections, and up-regulated expression levels of TNF-α, IL-1β, IL-17A, and IFN-γ in serum, and TLR2, p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK in synovial tissues (P<0.01). Compared with the model group, the DHJST groups showed increased body weight of rats (P<0.01), decreased paw swelling degree, arthritis index, and immune organ index (P<0.05, P<0.01), reduced comprehensive microvascular score and vascular resistance (P<0.05, P<0.01), improved synovial histopathological injury, increased apoptosis rate of synovial cells (P<0.01), and down-regulated levels of TNF-α, IL-1β, IL-17A, and IFN-γ in serum (P<0.05, P<0.01) and TLR2, p-NF-κB p65/NF-κB p65 and p-p38 MAPK/p38 MAPK in synovial tissues (P<0.05, P<0.01). ConclusionDHJST may alleviate the inflammatory reaction in CIA rats by regulating the TLR2/p38 MAPK/NF-κB signaling pathway, thus exerting its anti-rheumatoid arthritis effect.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 44-54, 2023.
Article in Chinese | WPRIM | ID: wpr-961682

ABSTRACT

ObjectiveTo study the effect of modified Erchentang on the expression of key molecules in the high mobility group Box 1 protein (HMGB1)/receptor for advanced glycation endproduct (RAGE)/nuclear factor-κB (NF-κB) signaling pathway in bronchioles of rats with chronic obstructive pulmonary disease (COPD), to explore the mechanism of modified Erchentang against bronchiolar inflammation of COPD rats via HMGB1/RAGE/NF-κB signaling pathway. MethodSixty SD rats were randomly divided into normal group, model group, modified Erchentang low-, medium- and high-dose groups (5, 10, 20 g·kg-1·d-1) and ethyl pyruvate (HMGB1 inhibitor) group, with 10 in each group. The COPD rat model was prepared by cigarette smoke combined with tracheal injection of lipopolysaccharide (LPS). After modeling, the modified Erchentang groups were given corresponding drugs (ig) and Ringer's solution (4 mL, ip), while the EP group was treated with equal volume of normal saline (ig) and EP (0.04 g·kg-1·d-1, ip). The normal group and the model group received equal volume of normal saline (ig) and Ringer's solution (ip) for 21 consecutive days. The contents of HMGB1, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2 and monocyte chemotactic protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of HMGB1, RAGE and NF-κB p65 were determined by Real-time polymerase chain reaction (Real-time PCR), and the protein expressions of HMGB1, RAGE, p-NF-κB p65, and alpha-smooth muscle actin (α-SMA) in bronchioles tissue of rats were determined by immunohistochemistry (IHC). ResultCompared with the conditions in the normal group, the forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and FEV1/FVC in the model group were decreased (P<0.01) while the contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF were increased (P<0.01). And the model group presented higher mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01) than the normal group. Compared with the model group, the modified Erchentang medium- and high-dose groups had increased FEV1/FVC (P<0.05, P<0.01), lowered contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF (P<0.05, P<0.05), and reduced mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.05, P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01). ConclusionModified Erchentang can resist bronchiolar inflammation of COPD rats. The mechanism may be related to down-regulating the mRNA expressiona of HMGB1 and RAGE, inhibiting the activity of NF-κB, and reducing the release of HMGB1, CXCL1, CXCL2 and MCP-1, thus suppressing the inflammatory injury and abnormal repair of bronchioles.

SELECTION OF CITATIONS
SEARCH DETAIL